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MpCpKp ,, - stiffness, damping and mass matrix for primary 
system; 

ABSTRACT 
The paper presents the analytical method and main 

approaches that have been used for the four benchmark 
problems developed by BNL in the scope of the "Benchmark 
Program for the Evaluation of Methods to Analyze Non-
Classically Damped Coupled Systems". The full investigation 
[1] contains the detailed description of implemented Analytical 
Method, solution for each of the benchmark problem with 
comments and detailed output results. In general, three methods 
have been used to resolve the problem. Two Response 
Spectrum Methods (RSM-I and RSM-II) can be easily 
implemented in engineering practice from point of view of 
traditionally available information for purposes of analysis. The 
complex-mode Time History Analysis has been utilized also to 
show possible deviation versus applicable engineering efforts. 

CspCpsKpsKsp ,,, - components of stiffness and damping 
matrix for coupled system;  

pCpK SS , - components of stiffness and damping matrix for 
the constraining of the secondary system to the 
primary system; 

)(tag - earthquake ground acceleration; 

SSS uuu &&& ,, - displacements, velocities and accelerations of 
secondary system; 

PPP uuu &&& ,, - displacements, velocities and accelerations of 
primary system; 

UgpUgs, - influence vectors that coupled the ground motion 
to the corresponding degrees of freedom ; 

 
METHOD OF ANALYSIS. 

The equation of motion for coupled "primary-secondary" 
system may be expressed in the global system coordinates as: 

 
The motion of the secondary system relatively to the 

primary may be expressed with aid of the following 
transformation: 
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)2(* PSS uUspuu +=  

 
where: 
 

where: 
Su   - "relative" displacements of the secondary system ; 

 
Usp - transformation matrix between "constraint" and "inner" 

points of secondary system; 
MsCsKs ,,  - stiffness, damping and mass matrix for fixed in 

constrained points secondary system ; 
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It has to be noted, thatUsp may be expressed in the 
following form: 

 
)3(*1 KspsKUsp −−=  

 
Based on equations (2) and (3) it is possible to transform 

the initial system coordinates to the new "relative" coordinates 
with the following transformation: 
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)9(**~;**~ 1 UspMsspUsMKspsKKpspKK TSS

P =−= −

 

 
where: I - Unit Matrix, T - transformation matrix defined by 
(4). As it was shown, Equation (8) is the modal transformation of 

initial Equation (1). Stiffness and Mass matrixes in this 
equation are partially populated, but advantage of this equation 
is the diagonal damping matrix, which reflects the modal 
dissipation for isolated primary and secondary systems. 

The assumption of negligible character of dissipation 
forces for "rigid body" and "constraint" modes may be 
expressed as the following equations: 
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From the other hand, it is possible to rewrite (1) in alternate 
form: 

 
and expanding (5): )10()(*** tFUMUCUK =++ &&& , 

 
)5(**,* aUspCsspUpCUspCsCsp TS =−=  where: - corresponding kinematic parameters of 

coupled system, - matrixes of stiffness, mass and 
damping, - right-hand vector of external forces. After 
modal decomposition of (10) we have: 

UUU &&& ,,

)(tF
CMK ,,Substituting (4) and (5a) into Equation (1) and 

multiplying both it parts by matrix 
TT , after corresponding 

transformations with accounting of (3), the equation of motion 
may be readily rewritten in the following form:  

[ ] [ ] )11()(*****2 tFYYCY TT Ψ=+ΨΨ+Ω &&&  
[ ]
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where: ΨΩ, - eigenfrequencies and eigenvectores of coupled 
undamped system, Y - corresponding modal coordinates, 
which can be expressed in form: 
 

)12(*YU Ψ=  
 
At the same time, vector  may be expressed in terms of 
modal coordinates corresponding to Equation (8): 

U
Given the following modal transformation: 
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From (12) and (13) follows: 
  

)14(*mod*1 YTX Ψ= −  Equation (6) may be presented in modal terms: 

After substituting X into Equation (8) and performing needed 
transformation the modal damping matrix corresponded to (11) 
may be obtained as: 
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the functions may be readily founded from the 1 
DOF equation: 
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and in the final form: 

So, any response of considered system then may be obtained 
from: 
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For Response Spectrum Method the expressions (21) may be 
reformulated to double sum combination: 
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Thus, the initial task leads to solution of modal Equation (11) 
with the diagonal Mass and Stiffness Matrix and fully 
populated Damping Matrix. Evidently, there are several ways 
to resolve this Equation. Among them are: 

where: 
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- numerical time-history integration. When number of 

accounted modes is equal to the number of DOF, this 
method provides the "exact" solution. 

   

ij
v
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d
ij µεε ,, - correletion coefficients 

- complex eigenvalues analysis and implementation on the 
basis of this solution one of Response Spectrum Methods.   

The values of may be 

obtained directly from the Time History Acceleration according 
to the following formulas: 
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The equation (11) leads to the following complex 2Nx2N-
eigenvalued problem: 
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from where: 
 

ii λω = - natural frequencies of considered system; 

iii λλξ /)Re(−= - damping ratios. 

 
According to [1] the response of considered system may be 
obtained in the following form: 
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i &  This approach in the current evaluation has been realized for 

the considered benchmark problems (in the further 
consideration - RSM-I). Since the values of all cross-
correlation coefficients are calculated here practically from the 
“exact” solution, such procedure may show the realistic limits 
of Response Spectrum Method versus Time History Analysis. 
But for engineering purposes for calculation of these cross-
correlation coefficients the following expressions may be used 
[2]: 

where: 
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where: 
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Namely for the last expressions the alternate simplified CQC 
Response Spectrum Method (RSM-II) has been developed on 
the basis of technique described in [3]. The accounting of high 
frequency modes has been performed according to [2]. 
 
The figure 1 shows the principal flow chart for described above 
methodology. 

 
The described above analytical procedure has been 

implemented in modified for these purposes computer program 
dPIPE ([4], [5]). 
 
 
RESULTS OF ANALYSES AND CONCLUSIONS. 

The full set of analysis results has been presented in report 
[1]. Every set of solutions contains results for complex-mode 
Time History Analysis and also for two described above 
variants of Response Spectrum Method (RSM-I and RSM-II). 
Additional information (e.g. eigenfrequencies for primary, 
secondary and coupled undamped systems, modal damping end 
frequencies for complex modes, etc.) is given in corresponding 
tables. All Time History Analyses have been performed with 
integration step DEL=0.004 sec. For RSM-II the value of Cut-
of-Frequency was defined as 30 Hz.  

 
On the basis of obtained results the following main 

conclusions may be stated: 
 
1. Proposed Response Spectrum Method (RSM-II) can be 

easily implemented in engineering practice from point of 
view of traditionally available information for  purposes of 
analysis: 

- modal properties of primary system or its simplified (stick) 
model ; 

- full information for secondary system;  
- set of Response Spectra for different damping ratios. 
2. Preliminary comparison of RSM results versus THA 

results have shown that RSM-I method leads to more 
accurate solution. It means that additional improvement of 
proposed method may be obtained using more 
sophisticated procedure for cross-correlation coefficient 
calculation. 

3. During actual investigation it was founded that for 
primary-secondary systems with closely spaced 
frequencies use of the absolute sign in front of the double 

summation recommended US NRC shows an essential 
error even for classically damped systems. 

4. The simplified analysis of the Equation (11) with diagonal 
components of damping matrix only, which is often used in 
engineering practice, has been carried out additionally. 
This analysis was performed for the Problem #4. 
Obviously, that this method leads to essential errors not 
only versus accurate solution, but also versus other 
proposed methods and can’t be recommended. 

 
On the basis of obtained results it seems to be necessary 

and very important to investigate an extra case: the phenomena 
of local damping. Such a phenomena exists and widely 
dispersed due to numerous implementations of viscous dampers 
for vibration and seismic protection of structures, systems and 
piping. In dynamic analysis taking into account the simplified 
mathematical models of such devices (either elastic or ideal 
viscous part) can dramatically change the actual dynamic 
response ([6] – [9]). 
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Figure 1. Principal Diagram for Proposed Analytical Method 
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